|
djl-serving
☆
« Back to VersTracker
|
||||||||||||||||||||||||||||||
|
Description: This module contains an universal model serving implementation |
||||||||||||||||||||||||||||||
| Type: Formula | Latest Version: 0.35.0@0 | Tracked Since: Dec 17, 2025 | ||||||||||||||||||||||||||||||
| Links: Homepage | @DeepJavaLibrary | formulae.brew.sh | ||||||||||||||||||||||||||||||
| Category: Ai ml | ||||||||||||||||||||||||||||||
| Tags: ai machine-learning model-serving inference deep-learning mlops | ||||||||||||||||||||||||||||||
| Install: brew install djl-serving | ||||||||||||||||||||||||||||||
|
About: DJL Serving is a high-performance, open-source model serving framework designed for seamless deployment of deep learning models. It provides a universal serving solution that supports multiple deep learning engines including PyTorch, TensorFlow, and MXNet. The tool simplifies model deployment with built-in REST APIs, batch processing capabilities, and dynamic loading for efficient inference at scale. |
||||||||||||||||||||||||||||||
Key Features:
|
||||||||||||||||||||||||||||||
Use Cases:
|
||||||||||||||||||||||||||||||
Alternatives:
|
||||||||||||||||||||||||||||||
| Version History | ||||||||||||||||||||||||||||||
|